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1. Description of the Model

A web site has been established recently at the
NASA Langley Research Center for online simulation of
solar radiation using the Coupled Ocean-Atmosphere
Radiative Transfer (CO-ART) model (shown in Figure
1). This provides atool to calculate radiances and irradi-
ances (fluxes) at individual wavelengths or in a spectral
band specified by the user at any level in the air and
water. It can also calculate the water-leaving radiances at
the ocean surface. Usersjust follow the setup menu (as
shown Fig. 1) to select or specify the atmosphere (atmo-
spheric profile, aerosol type, AOT and precipitable water,
etc.) and the ocean (ocean depth, wind speed, Chl,
CDOM, etc.) aswell as the calculation type and output
levels.

COART is established on the Coupled DI Screte
Ordinate Radiative Transfer (CDISORT) or the Coupled
DISORT, which was developed from DISORT, apublicly
distributed software for radiative transfer by NASA.
Because DISORT does not consider the refractive index
variation in the medium, it is applicable only to radiative
transfer problems within a medium where the refractive
index variation is negligible, such asin the atmosphere
with the land or ocean surface treated as bottom bound-
ary. However, it iswell known that the optical properties
within the ocean affect the upwelling radiation in the
atmosphere and the the atmospheric properties affect the
radiation penetrated into the ocean. In other words, the
radiation in the atmosphere and in the ocean interact with
each other and the radiative transfer process in the atmo-
sphere and ocean should be treated consistently as one
coupled system. Thiswas done in CDISORT by includ-
ing the refractive index into the radiative transfer equa-
tion. The detailed formulation and solution of the
radiative transfer equationsin the coupled atmosphere-
ocean system by using the discrete ordinate method was
given by Jin and Stamnes (1994).

However, the solution presented in Jin and Stamnes
(1994) was for the flat ocean surface. In reality, the calm
ocean conditionsis very rare. The ocean surface rough-
ness affects the reflection and transmission of the inci-
dent radiation at the ocean surface and, therefore, the
abedo and solar heating in the ocean, as well as the sun
glint pattern. We have recently included the wind blown
ocean surface roughness by using the Cox and Munk
(1954) surface slope distribution which is a function of
wind speed (Jin et al., 2002). The sun glint induced by
the surface roughness is included accordingly.

Because the radiative transfer equation, which
includes the refractive index and surface roughness, is
solved consistently in the coupled system, COART con-
siders the ocean just as additional ‘ atmospheric layers
but with significantly different optical properties. It
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Fig. 1 The web page for CO ART.
http://snowdog.larc.nasa.gov/jin/rtset.html

treats the scattering and absorption in both the atmosphere
and the ocean explicitly. Therefore, unlike the usual atmo-
spheric radiative transfer models which take the ocean sur-
face as the lower boundary with given reflectivity, COART
can simulate the ocean surface reflectance.



2. Examples of Calculation by COART

The following figures present some exam-
ples of calculations. Observation data, when
available, are also shown for comparison. All the
radiation measurements are taken over the Ches-
apeake Lighthouse platform or over aircraft at
NASA's CERES Ocean Validation Experiment
(COVE) site, which is 25km east of the Virginia
Beach in the Atlantic Ocean. The aerosol optical
properties, precipitable water (PW), wind speed,
Chl and the absorption properties for soluble and
particulate materialsin the ocean, which are used
for model input, are aso from in-situ measure-

ments at COVE.
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Fig. 2. Modeled (red) and measured
(black) ocean albedo in the six MFRSR
channels at COVE on July 31, 2001.
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Fig. 3. An example of modeled
and measured downwelling
spectral irradiances.
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Fig. 2. Modeled and measured narrow band ocean surface albedo in
the six MFRSR channels.

Fig. 3. Modeled and measured spectral downwelling irradiances.

Fig. 4. Modeled and measured spectral ocean surface albedo.

Fig. 5. Modeled and measured broadband ocean surface a bedo.

Fig. 6. Wind effects on ocean surface broadband albedo.

Fig. 7. Modeled flux penetration to various depths of the ocean.

Fig. 8. Flux attenuation in the upper ocean.

Fig. 9. Shortwave absorption as ocean depth.

Fig. 10. Remote sensing reflectance for ocean with different Chl.

Fig. 11. AirMISR measured reflectance at 20 km above the ocean
and model simulation.

Fig. 12. Anisotropic reflectance or BRDF at TOA and ocean surface

Model and Observation Comparison For Ocean
Surface Albedo at COVE (3—1-00 to 3-1-01)
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Fig. 4. A comparison of the modeled
and aircraft measured albedo over
the oceanin thevicinity of COVE on
August 12, 2002.
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Fig. 7. Modeled downwelling irradi-
ances at the TOA, surface and vari-

ous depthsin the ocean under clear
sky conditions
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Fig. 5. Modeled and measured broad-
band ocean surface albedo at COVE
under clear skiesfor awhole year.

1 Fig. 6. Wind effects on ocean surface
1 dbedo. The observed albedo as a

1 function of the cosine of SZA are plot-
| ted in three wind categories. The

dashed line and the solid line are the

1 modeled albedo with the minimum

wind (0.48 m/s) and maximum wind

1 (14.0 m/s) of the observations, respec-

tively. The mean AOD and PW of
measurements were used in model

10 caculations.
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Fig. 8. Modeled downwelling flux
attenuation coefficients averaged in
the 30 m of upper ocean for different
chlorophyll concentrations.
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Fig. 9. Modeled local solar absorp-
tion asafunction of depth. Note that
the absorptions for the broadband
and the PAR are overlapped at depth
of about 10 m, indicating that most
of radiation outside of PAR is
absorbed in thefew meters of thetop
layer. Clear sky; SZA=30°; MLS
atmosphere.
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Fig. 10. Modeled remote sensing
reflectance (Rrs= Lw / Ed) for differ-
ent Chls. Note that the optical proper-
tiesfor ocean particles are based on
the parameterization of Gordon and
Morel (1983), which are chlorophyll

related only. The actual absorption and

scattering may be very different,

which could result in very different Lw

and Rrs, especially in the blue.
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Fig. 12. Modeled BRDF at the TOA and the ocean surface for three different wind speeds. Clear sky;
SZA=30° MLS atmosphere; no aerosol. Note the sun glint variations with wind speed.

3. Featuresto be Added

COART istill under development. The online model does not have
the full capability as the offline model yet. Some new features will be
added to the online input/output menu. These include but not limited

to the following:

Input vertical profile of water vapor and aerosol.
Input aerosol optical properties at multiple wavelengths.

* Input Chl profilein ocean.
* Input clouds.
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Implement the band model for fast computation over broadband.

If you want to receive the upgrade information, go to
http://snowdog.lar c.nasa.gov/jin/rtnote.html, and add your email

to the mailing list.
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